2 00 4 Proof of the Lovász Conjecture

نویسنده

  • DMITRY N. KOZLOV
چکیده

In this paper we prove the Lovász Conjecture: If Hom (C2r+1,H) is k-connected, then χ(H) ≥ k + 4, where H is a finite undirected graph, C2r+1 is a cycle with 2r+1 vertices, r, k ∈ Z, r ≥ 1, k ≥ −1, and Hom (G,H) is the cell complex with the vertex set being the set of all graph homomorphisms from G to H , and cells all allowed list H-colorings of G. Our method is to compute, by means of spectral sequences, the obstructions to graph colorings, which lie either directly in the cohomology groups of Hom (C2r+1,Kn), or in the vanishing of the certain powers of Stiefel-Whitney classes of Hom (C2r+1,Kn), viewed as Z2-spaces, resulting in proving even sharper statements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h / 04 02 39 5 v 3 [ m at h . C O ] 1 8 Ju l 2 00 5 PROOF OF THE LOVÁSZ CONJECTURE

To any two graphs G and H one can associate a cell complex Hom (G,H) by taking all graph multihomorphisms from G to H as cells. In this paper we prove the Lovász Conjecture which states that if Hom (C2r+1, G) is k-connected, then χ(G) ≥ k + 4, where r, k ∈ Z, r ≥ 1, k ≥ −1, and C2r+1 denotes the cycle with 2r + 1 vertices. The proof requires analysis of the complexes Hom (C2r+1,Kn). For even n,...

متن کامل

m at h . C O ] 2 1 M ay 2 00 3 TOPOLOGICAL OBSTRUCTIONS TO GRAPHCOLORINGS

For any two graphs G and H Lovász has defined a cell complex Hom (G,H) having in mind the general program that the algebraic invariants of these complexes should provide obstructions to graph colorings. Here we announce the proof of a conjecture of Lovász concerning these complexes with G a cycle of odd length. More specifically, we show that If Hom (C2r+1, G) is k-connected, then χ(G) ≥ k + 4....

متن کامل

m at h . C O ] 3 A ug 2 00 3 TOPOLOGICAL OBSTRUCTIONS TO GRAPH COLORINGS

For any two graphs G and H Lovász has defined a cell complex Hom (G,H) having in mind the general program that the algebraic invariants of these complexes should provide obstructions to graph colorings. Here we announce the proof of a conjecture of Lovász concerning these complexes with G a cycle of odd length. More specifically, we show that If Hom (C2r+1, G) is k-connected, then χ(G) ≥ k + 4....

متن کامل

ar X iv : m at h / 04 10 33 5 v 1 [ m at h . C O ] 1 4 O ct 2 00 4 HIGHER CONNECTIVITY OF GRAPH COLORING COMPLEXES SONJA

The main result of this paper is a proof of the following conjecture of Babson & Kozlov: Theorem. Let G be a graph of maximal valency d, then the complex Hom (G, Kn) is k-connected, whenever n ≥ d + k + 2. Here Hom (−,−) denotes the polyhedral complex introduced by Lovász to study the topological lower bounds for chromatic numbers of graphs. We will also prove, as a corollary to the main theore...

متن کامل

A short proof of the maximum conjecture in CR dimension one

In this paper and by means of the extant results in the Tanaka theory, we present a very short proof in the specific case of CR dimension one for Beloshapka's maximum conjecture. Accordingly, we prove that each totally nondegenerate model of CR dimension one and length >= 3 has rigidity. As a result, we observe that the group of CR automorphisms associated with each of such models contains onl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008